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FOREWORD

This report was prepared by the Boeing Vertol Company for the
Aeromechanics Laboratory, U.S. Army Research and Technology
Laboratories (AVRADCOM) under NASA-Ames Research Center Con-
tract NAS2-10880 as part of the Army's Advanced Digital/Optical
Control System (ADOCS) program managed by the Applied Technolo-
gy Laboratory, Ft. Eustis, VA. Bruce B. Blake was the project
manager and Kenneth H. Landis was the project engineer. Edwin
W. Aiken of the U.S. Army Aeromechanics Laboratory at NASA-Ames
Moffett Field, CA. supported the program as the contract
monitor.

The authors of this report are grateful to the following per-
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Simulation Test Pilots: L. Freisner, J. Tulloch, G. Tucker,
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1.0 SUMMARY

The Advanced Cockpit Controls/Advanced Flight Control System
(ACC/AFCS) study was conducted by the Boeing Vertol Company as
part of the Army's Advanced Digital/Optical Control System
(ADOCS) program. Specifically, the ACC/AFCS investigation was
aimed at developing the flight control laws for the ADOCS dem-
onstrator aircraft that will provide satisfactory handling
qualities for an attack helicopter mission. The three major
elements of design considered during the ACC/AFCS study are
summarized as follows:

o Pilot's Integrated Side-Stick Controller (SSC)--Number of
axes controlled; force/displacement characteristics; ergon-
omic design.

O Stability and Control Augmentation System (SCAS)--Digital
flight control laws for the various mission phases; SCAS
mode switching logic.

o Pilot's Displays--For night/adverse weather conditions,
the dynamics of the superimposed symbology presented to
the pilot in a format similar to the Advanced Attack Heli-
copter (AAH) Pilot Night Vision System (PNVS) for each
mission phase as a function of SCAS characteristics; dis-
play mode switching logic.

Two phases were part of the ACC/AFCS study; Phase 1 included a
literature review, preliminary control law analysis, and pilot-
ed simulations to evaluate side-stick controller designs and
control law requirements for low-speed and low-altitude nap-
of-earth flight under IMC. Full-envelope control laws were
developed during Phase 2, and piloted simulation was continued
to evaluate implementation of high-speed/transition control
laws and modified side-stick controller designs developed from
the Phase 1 simulations.

Findings from the literature review and the analysis and syn-
thesis of desired control laws are reported in Volume 2. Re-
sults of the five piloted simulations conducted at the Boeing
Vertol and NASA-Ames simulation facilities are presented in
Volume 3. Conclusions drawn from analysis of pilot rating data
and commentary were used to formulate recommendations for the
ADOCS demonstrator flight control system design. The ACC/AFCS
simulation data also provide an extensive data base to aid the
development of advanced flight control system designs for fu-
ture V/STOL aircraft.






2.0 INTRODUCTION

The Advanced Cockpit Controls/Advanced Flight Control System
(ACC/AFCS) design study was performed for The Aeromechanics
Laboratory, U.S. Army Research and Technology Laboratories
(AVRADCOM) under NASA Ames Research Center Contract NAS2-10880.
Boeing Vertol was awarded the ACC/AFCS contract in December
1980 as part of the Army's Advanced Digital/Optical Control
System (ADOCS) program managed by the Applied Technology Labo-
ratory, Fort Eustis, Va. under Contract DAAK51-82-C-0002.

The ADOCS Program is aimed at developing a battlefield-compat-
ible advanced flight control system which can substantially
increase aircraft mission effectiveness in part through de-
creased pilot workload and improved handling qualities. The
objectives of the program are: (1) the development of the tech-
nology required for a digital optical flight control systenm,

(2) the integration of the new technology with advanced flight
control concepts into a demonstrator aircraft, and (3) the dem-
onstration of the advantages of the system in the areas of:
mission effectiveness, handling qualities, flight safety, cost,
weight/volume, survivability/vulnerability, and reliability/main-
tainability. The ADOCS program is divided into two phases:

The first involves the development of component technology for

a digital optical flight control system while the second is
devoted to the development of the ADOCS demonstrator system.

The first flight of the demonstrator aircraft, a UH-60A Black
Hawk, is scheduled for the fall of 1984.

Figure 2-1 is a schedule which shows major activities of the
ACC/AFCS study. Phase 1 consisted of a literature review, pre-
liminary analysis and design, and three piloted simulations.
The primary purpose of Phase 1 was to develop a systematic ap-
proach to the synthesis of the desired flight control laws for
certain critical low-speed, low-altitude portions of the attack
helicopter mission for tasks under both visual and instrument
meteorological conditions (VMC and IMC, respectively). Varia-
tions of the force/deflection characteristics and the number of
axes controlled through an integrated side-stick controller
(SSC) were investigated. Phase 2 included the synthesis of
candidate flight control/display laws for the entire mission
including high-speed, transition, and low-speed tasks under
both IMC and VMC. An evaluation of automatic control law
switching and various selectable mode features was conducted
during two simulation phases using the NASA-Ames Vertical Mo-
tion Simulator (VMS) Facility.

SECEDING PAGE BLANK NOT FIDWTD

““.Ql_mrﬁunoumv BLANK



1-2 34nbiy

(SPWY-VYSYN) NOILLYINWIS 82 ISYHJ

¢ 3SVHd
SMVYT TOHLNOD amwam-xo_: .“_w._wwm
A
e e D S N3 e
(AB) NOILYINWIS 01 3SYHd
(AG) NOILYINNWIS 91 m.m<:u I 3SVYHd

| T T —
861 €861L c861 1861

FTNA3IHOS AVHODO0Ud SO4vV/D0V



3.0 EXPERIMENT DESIGN

Pilot workload and level of performance achieved during a spe-
cific attack helicopter mission task are influenced by combined
elements of the helicopter control/display system design. The
primary elements considered during this simulation program
were:

(1) Side-stick Controller (SSC) Configuration - Stiff or
displacement type, and level of integration ranging
from a fully-integrated 4-axis side-stick controller
to a (2+1+41) arrangement; i.e., a 2-axis side-stick
for pitch and roll control with separated directional
pedals and a left-hand collective controller.

(2) Stability and Control Augmentation System (SCAS)
Characteristics - Several generic types of feedback
stabilization and feed-forward command shaping in
each of the four control axes (pitch, roll, yaw, and
vertical).

(3) Visual Display - Either day VMC with the simulator
four-window, wide angle field-of-view visual system,
or night IMC using a simulated FLIR image and super-
imposed YAH-64 Pilot Night Vision System (PNVS) (Ref-
erence 1) symbology presented on a helmet-mounted
display.

General Approach

The systematic approach to the investigation of these elements
is illustrated in Figure 3-1. The overall investigation was
directed toward defining those combinations of SSC, SCAS, and
display that produce Level 1, 2, and 3 handling qualities rat-
ings (Reference 2).

In applying this general approach to the specific problem, the
blocks defined in Figure 3-1 were broken down further into more
detailed configuration matrices. For example, each side-stick
controller configuration block contains variations in force/
displacement relationships as well as ergonomic characteris-
tics. Generic control laws can be mechanized in several dif-
ferent ways with significantly different results. Display
symbology involves a myriad of variations in parameters, for-
mat, scaling, and logic.

Degraded modes can also be visualized in Figure 3-1. Since the
selected controller configuration will be part of the primary
flight control system, all allowable degraded modes will lie in
the control-law/display-law plane. For example, certain fail-
ures such as FLIR loss will affect the display axis only, while
loss of a ground velocity signal may affect the system control
law and display symbology.
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By considering the overall system design as a series of matrix

levels of increasing detail, the interactive effect on handllng
qualltles of each variation in an element of the system is kept
in perspective. A discussion of important issues to be consid-
ered within each primary system element follows, including spe-
cific details about the controller/SCAS/display characteristics
evaluated.

3.1 SIDE-STICK CONTROLLER CONFIGURATION

The experiment was designed to provide a comprehensive evalua-
tion of multi-axis side-stick control for an attack helicopter
mission including variations in: (1) the number of axes con-
trolled through the side-stick device, and (2) the force/de-
flection characteristics of the controller.

The four controller configurations evaluated during Phase 1 are
illustrated in Figure 3-2 with the left-hand controller imple-
mented using a conventional collective lever as a force con-
troller. During Phase 2 a side-stick controller replaced the
collective lever as the left-hand vertical controller as shown
in Figure 3-3. 1In addition, the (3+1) Pedal configuration was
eliminated based on results of Phase 1.

Force/Deflection Characteristics

A definition of acceptable/unacceptable ranges of force/deflec-
tion gradient for each controller configuration option (4+0),
(3+1), or (2+1+1) was necessary. The determination of desired
force/deflection characteristics for the ADOCS demonstrator
side-stick controller(s) was performed during the course of
this simulation study using seven 4-axis side-stick controllers
described in Table 3-1. Force/deflection characteristics for
each controller are presented including operating force range,
maximum deflection, and force/deflection gradient.

All 4-axis controllers are a base-pivot type for pitch and roll
motion. Fore-aft force produces a longltudlnal control input
and right-left force a lateral control input. Yaw control is
obtained by twisting about the grip centerline, and vertical
control through application of pure up and down forces.

3.2 STABILITY AND CONTROL AUGMENTATION SYSTEM (SCAS)
CHARACTERISTICS

The segments of the attack helicopter mission considered to be
cr1t1cal from a handling qualities point-of-view are those spent
in nap-of-the-earth (NOE) fllght those inherently hlgh work-
load tasks include low-speed point-to-point maneuvering using
dash, quick stop, and sideward flight techniques, masked hover
in ground effect and unmasked hover out of ground effect in-
cluding target search, acquisition, and weapon delivery. These
simulations were de51gned to provide a definition of flight
control laws and SCAS mode switching logic reqguirements for the

7
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various mission segments. In addition, the effects on both
handling qualities and flight safety of reduced levels of sta-
bility augmentation were to be determined. The effect of the
side-stick controller configuration under degraded SCAS mode
conditions is important, since high levels of vehicle stability
may mask undesirable characteristics of some controller op-
tions. SCAS redundancy requirements also need to be weighed in
final selection of a controller configuration. For example, a
(3+1) axis controller configuration requiring only rate stabi-
lization may be more cost effective than a 4-axis side-stick
controller requiring attitude stabilization to achieve Level 2
handling qualities.

3.2.1 Primary Flight Control System (PFCS) (Figure 3-4)

A quantized controller force-command signal is provided to each
PFCS axis. The signal is shaped, adjusted in gain, passed
through a derivative rate-limiter, and fed to the AFCS command
model and to the primary UH-60A flight-control system through a
feed-forward shaping network. Limiting of the AFCS output is
also a function of the PFCS, but was not incorporated for this
experiment. The specification of force-command signal quanti-
zation, nonlinear command shaping, derivative rate-limiter para-
meters, and forward path lead-lag shaping characteristics are
described in detail in Section 4.1 of Volume 2.

3.2.2 Automatic Flight Control System (AFCS)

The AFCS model implemented for the ACC/AFCS simulation was de-
veloped in two stages. The original implementation for Phase 1
simulations was designed primarily for hover and low speed flight.
Modifications were made for Phase 2 simulations to include ad-
ditional feedback and feed-forward paths required for forward
flight control laws. Specifically, airspeed and lateral accel-
eration stabilization signals and cross-axis control paths were
added for decoupling and automatic turn coordination.

In the longitudinal AFCS, linear velocity stabilization was
provided by a longitudinal ground speed signal for airspeeds
below 40 knots and by a longitudinal airspeed signal for air-
speeds above 45 knots. Switching between the two signals was
transient-free.

The lateral AFCS was designed for this experiment to switch
between a roll attitude command/lateral velocity stabilization
system at low speed and a roll rate command/attitude hold sys-
tem for higher speed maneuvering flight. This hybrid lateral
AFCS was provided as a selectable feature.

The attack helicopter mission dictates precise hover control to
maintain horizontal position while executing Precision Hover
and Bob-up Tasks. Accordingly, feed-forward and feedback paths
were incorporated in the longitudinal and lateral AFCS control
laws to provide a pilot-selectable Hover-Hold Mode. The Hover-

11
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Hold Mode provides a velocity-command system with high gain
velocity stabilization with or without position feedback. Lon-
gltudlnal and lateral position reference signals used in the
position feedback are derived from groundspeed signals.

The directional AFCS includes yaw rate stabilization with a
selectable Heading Hold feature. A cross-axis command path
provides an appropriate yaw rate command in forward flight for
automatic turn coordination based on airspeed and bank angle.
Feed-forward command shaping provides a yaw rate command system
if Heading Hold is selected and a yaw acceleration system with
the Heading Hold Mode disabled.

The vertical AFCS was implemented with gain scheduling as a
function of airspeed for the altitude and altitude rate feed-
back paths. This was necessary to achieve tight altitude hold
for Precision Hover Tasks, while keeping lower stabilization
gains to reduce collective control system activity during high
speed flight. Command model gains were also altered appropri-
ately to prov1de the desired vertical response to control in-
puts at all airspeeds.

3.3 VISUAL DISPLAY SYSTEM

Since the ADOCS mission is to be flown at night or in adverse
weather conditions, as well as in VMC, it is necessary to con-
sider not only the effects of the controller and SCAS charac-
teristics, but also the effect on handling qualities of the
pilot's night-vision aids. For this experiment, flight under
IMC was simulated using the Honeywell Integrated Helmet and
Display Sight System (IHADSS). Computer generated symbology,
similar to that used with the AH-64 Apache Pilot Night-Vision
System (PNVS), was superimposed on a 30° by 40° monochromatic
image of the terrain board (Figure 3-5) and presented to the
pilot on the helmet-mounted display (HMD). This imagery slaved
to the pilot's head movements in azimuth and elevation and
driven by aircraft motion parameters, provided the only visual
cues available to the evaluation pilot. The pilot's line of
sight is tracked with a helmet-mounted sight (HMS) that pro-
vides closed-loop command signals to point the terrain-board
camera which simulates a turret-mounted night-vision sensor.
Since the HMD is coupled to the pilot's head motions, he is
able to scan a wide field-of-view without being constrained to
a head-down or look-forward position.

A unique feature of this experiment was the capability to easi-
ly evaluate and compare the effect of VMC and IMC on pilot rat-
ings and task performance. IHADSS was installed at both
simulation facilities for simulation of IMC.

13
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4.0 CONDUCT OF EXPERIMENT

4.1 FACILITY DESCRIPTION

Five piloted simulation experiments were conducted as part of
the ACC/AFCS study. Three simulations were completed during
Phase 1 at the Boeing Vertol Flight Simulator Facility, and two
were conducted during Phase 2 at the NASA Ames Vertical Motion
Simulator (VMS). The following sections describe these two
simulator facilities.

Boeing Vertol Flight Simulation Facility

The major elements of the Boeing Vertol Simulator are shown in
Figure 4-1. The cockpit cab is mounted on a six-degree-of-free-
dom limited-motion base. Both conventional helicopter collec-
tive and directional controls were implemented as
small-displacement force controllers and adjustable mountings
of the various candidate side-stick controllers was provided.

A four-camera, wide-angle television visual display system was
used to simulate VMC. Figure 4-2 is a photograph which shows a
typical scene presented to the simulator pilot on final ap-
proach to an airport. The center window video channel was used
to provide the IMC image seen with the IHADSS.

Terrain Board

The terrain board developed for the first phase of the simula-
tion is shown in Figure 4-3. The model board is a 200:1 scale
model which includes a runway with evenly spaced obstacles for
a Slalom Task, a tree-lined river-bed canyon for NOE maneuvers,
and various locations for bob-up and lateral jink (sideward)
maneuvering.

NASA-Ames Vertical Motion Simulator (VMS)

Ames Research Center's Vertical Motion Simulator (VMS) Facility
(Reference 3) has a six-degree-of-freedom moving-base with 60
feet of available vertical travel (Figure 4-4). Modifications,
similar to those made on the Boeing cockpit, were also completed
on the NASA-Ames cab. In addition to the IHADSS tracking hard-
ware and the right-hand SSC installation, the Ames cockpit was
modified to accommodate a left-hand SSC for vertical control.
Both SSC mountings were adjustable to provide a comfortable
orientation which minimized interaxis cross-coupling of control
inputs.

For the VMC portion of the evaluation performed during Phase 2
at NASA Ames, the visual scene was provided using a four-window,
color computer generated image (CGI) display system. Two data-
bases were available with the CGI, an NOE course (Figure 4-5)
designed as a replica of the terrain board at Boeing Vertol

and an airport runway scene (Figure 4-6) utilized to perform
Slalom and Approach-to-Hover Tasks.
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During Phase 2B, when handling qualities were evaluated under
IMC, the visual scene was simulated using a 300:1 scale terrain
board and camera visual system. The same NOE course and air-
port runway with obstacles were constructed on a model board to
perform identical tasks thereby allowing direct comparison of
Phase 1 and Phase 2 data.

4.2 AIRCRAFT MATH MODEL

During both phases of the ACC/AFCS study, simulation of the
baseline flight vehicle (the UH-60A) was provided by a generic
single main rotor helicopter math model. Both simulations in-
cluded six-degree-of-freedom rigid body dynamics as well as
main and tail rotor RPM degrees of freedom configured to repre-
sent the Black Hawk helicopter. Also 1ncluded in both simula-
tions were a canted tail rotor, control mixing, a movable
stabilator, and UH-60A fuselage aerodynamics. The NASA Ames
model contained three degree-of-freedom tip-path plane dynamics
which were not included in the Boeing Vertol model.

4.3 EVALUATION TASKS

Evaluation of total system (pilot, controllers, SCAS, displays)
performance was accomplished using a variety of standardized
tasks performed under both VMC and IMC. These tasks, are di-
vided up into three main categories: 1) low-speed tasks, 2)
high-speed tasks, and 3) transition tasks. During the perfor-
mance of these tasks, no secondary duties (i.e. armament, com-
munication, or navigation system management) were required of
the pilot. The following paragraphs describe each task.

Low-Speed Tasks

Figure 4-7 illustrates the low-speed tasks used for evaluation
of handling qualities during Phase 1 and Phase 2 simulation
periods. The Acceleration/Deceleration Task along the airport
runway was performed only for Phase 1, and the Precision Hover
Task where position was maintained about a rock located at the
end of the NOE course was added for Phase 2 simulations. Ef-
fects of larger motion cues and a simulated gust environment
made this task important for defining control response shaping
for Precision Hover. The NOE, 30-Knot Slalom, and Bob-up Tasks
were performed during both simulation phases. The NOE was a
multi-axis task performed in a simulated riverbed. The 30-Knot
Slalom involved avoiding evenly spaced obstacles on a runway
while maintaining altitude, airspeed, and ground track. The
Bob-up Task required a vertical climb, a turn to acquire a tar-
get, and a descent; all while maintaining X-Y position.

High-Speed Tasks

In addition to the low speed tasks, high speed Slalom Tasks
were defined for the Phase 2 simulation as illustrated in Fig-
ure 4-8. The 140-Knot Slalom Task could not be evaluated under

22
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IMC during Phase 2B since the maximum velocity of the camera
probe was limited.

Transition Tasks

Straight-and-Turning-Decelerating Approach-to-Hover Tasks (Fig-
ure 4-8) were performed to evaluate multi-axis maneuvering dur-
ing transition from forward to low speed flight. These task
enabled evaluation of control law switching and ability to pre-
cisely arrive at a desired hover location.

4.4 PILOTS' EXPERIENCE SUMMARY

Seven simulation test pilots participated in the ACC/AFCS study.
Their background included related simulation or flight test
experlence with side-stick controllers and/or exposure to IMC
visual display systems. Table 4-1 presents the names of all the
test pilots, their affiliation and experience, and summarizes
their participation in flight hours for each simulation phase.
Subsequent to Phase 1A activities, two evaluation pilots were
given 3 hours of IHADSS flight training on the PNVS Surrogate
Trainer at the U.S. Army Yuma Proving Ground to assess realism
of the simulation and improve their proficiency with IHADSS.

4.5 DATA COLLECTION AND ANALYSIS

Both pilot evaluation data and quantitative system performance
data were collected. The quantitative system performance data
consist of magnetic tape recordlngs of flight parameters rela-
tive to a reference hover position or desired flight path. The
pilot evaluation data consist of Cooper-Harper handling quali-
ties ratings (Reference 4) and tape-recorded pilot commentary.
At the end of each evaluation run the pilot assigned a single
numerical Cooper-Harper rating to the particular controller/
SCAS/task combination under investigation. In addition, the
pilot was asked to provide commentary to help identify those
aspects of the system that most heavily influenced the rating.
Experimental results which follow are based on an analysis of
pilot ratings and comments. Averaged pilot ratings are used to
summarize general trends and explain pilot qualitative
comments.,
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5.0 SIDE-STICK CONTROLLER DEVELOPMENT

Fly-by-wire or fly-by-optics flight control systems allow flex-
ibility not only in the synthesis of the control laws but also
in the design of the pilot's controllers. The potential bene-
fits of employing an integrated, multi-axis, side-stick con-
troller include: improved visibility, enhanced crashworthi-
ness, easier ingress and egress, a reduction in cockpit space
requirements, and an increased potential for single-pilot oper-
ations.

5.1 RELATED RESEARCH AND DEVELOPMENT PROGRAMS

Handling qualities research examining the effects of the char-
acteristics of a 2-axis side-stick controller was conducted

in support of the development of the F-16 aircraft. In a flight
investigation of the effects of variations in force/deflection
characteristics for certain fighter aircraft tasks (Reference
5), it was concluded that a small amount of side-stick motion
provided improved flying qualities over those achieved with a
fixed rigid controller. The results of this and other similar
flight experiments were used to develop a guide for the design
of two-axis side-stick controllers to be employed in fighter
aircraft (Reference 6); included in the design guide are recom-
mendations for stick neutral position, breakout forces, and
force-deflection characteristics in both the longitudinal and
lateral axes.

Research involving the use of side-stick controllers in Army
helicopters began in 1968 with the Tactical Aircraft Guidance
System (TAGS) program (Reference 7). The system implemented in
a CH-47B aircraft initially included an integrated four-axis
large-displacement controller. Because of coupling problems
between the longitudinal and vertical axes, a three-axis con-
troller was eventually implemented with vertical control ef-
fected through a standard collective lever. On the Heavy Lift
Helicopter (HLH) (Reference 8), a 4-axis displacement control-
ler was implemented at the load-controlling crewman's station
in conjunction with a ground velocity command and stabilization
system.

Side-stick control of single-rotor helicopters has been imple-
mented in a production aircraft - side-stick cyclic control at
the copilot's station of the AH-1 series of aircraft. In addi-
tion, side-stick controllers have been investigated using both
ground- and in-flight simulation. In a three-degree-of-freedom
moving-base simulation of the unaugmented Lynx helicopter at
RAE Bedford, a 2-axis displacement side-stick was compared to
the conventional cyclic controller for eleven different flight
tasks (Reference 9). When a suitable control sensitivity was
selected, the side-stick compared favorably with the conven-
tional controller and, in fact, was preferred for specific
tasks.
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A feasibility study of a 4-axis isometric side-stick controller
was recently conducted in the Canadian National Aeronautical
Establishment Airborne Simulator (a variable stability Bell
Model 205A-1) for a wide range of flight tasks (Reference 10).
Two primary side-stick configurations, a 4-axis controller and
a 3-axis controller with normal pedal control, were evaluated
together with three SCAS variations: rate command/attitude
hold in roll and pitch with augmented yaw rate damping; aug-
mented roll, pitch and yaw rate damping; and the basic 205 with
stabilizer bar removed and horizontal stabilizer fixed. With
appropriate gains, shaping, and prefiltering applied to the
pilot's force input in each controlled axis, pilot ratings com-
parable to those obtained with conventional controllers were
achieved with both side-stick configurations.

These 1nvestigations indicated that a comprehensive evaluation
of multi-axis side-stick control for an attack helicopter mis-
sion must include variations in: 1) the number of axes con-
trolled through the side-stick device, 2) the force~deflection
characteristics of the controller, and 3) the attendant SCAS
characteristics.

5.2 SIMULATION RESULTS

Force/Deflection Characteristics

The selection of pitch and roll force/deflection gradients was
guided by a review of the previously described published data.
References 5, 6 and 11 defined preferred regions of longitudi-
nal and lateral force/deflection gradients developed from Air
Force flight test evaluation of a 2-axis variable force-de-
flection side-stick controller. Figure 5-1 shows the recom-
mended force/deflection gradient range, in addition to four
specific longitudinal controller force/deflection configura-
tions evaluated during the initial simulation phase of the ACC/
AFCS study. The gradients were chosen to cover a range from a
"stiff" force gradient with very small deflection to a "soft"
force gradient with large deflection (112 degrees).

Pilot rating data comparing the four selected side-stick con-
trollers are presented in Figure 5-2. Best pilot ratings were
achieved with the small-and-medium-deflection side-stick con-
trollers having deflection/force gradients ranging from 0.4 to
0.8 degrees/lb. The large-deflection side-stick controller
received the worst overall pilot ratings. Based on these re-
sults, two modified side-stick controllers (Figure 5-3) were
developed for evaluation. The MSI-SD2 controller had modified
force/deflection characteristics in the pitch and roll axes
falling between the small-and-medium deflection controllers
described above. The MSI-SD3 SSC incorporated small-deflection
into all four control axes because of pilot's comments indicat-
ing that the lack of control harmony between the pitch/roll
axes and the directional/vertical axes was detrimental.
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CONTROLLER DEFLECTION (DEGREES)

CONTROLLER DEFLECTION (DEGREES)

ACC/AFCS CANDIDATE SSC CONTROLLERS
FCOCRCE / DEFLECTION CHARACTERISTICS

LONGITUDINAL AXIS

HLK LARGE DEFLECTION HLH MEDIUM DEFLECTION
0.9 LB/DEG 1.67 LB/DEG

MSI SMALL DEFLECTION (MSI-SD1)

MSI STIFF STICK

. 3.05 LB/DEG —
= } —_— f $ + + J
I T T T T ¥ )
1 2 3 4 5 6 7 8 9 10

APPLIED FORCE (POUNDS)

LATERAL AXIS

HLH LARGE DEFLECTION
0.6 LB/DEG

HLH MEDIUM DEFLECTION
1.05 LB/DEG

MSI SMALL DEFLECTION(MSI-SD1)
2.25 LB/DEG

MSI STIFF STICK

40 LB/DEG —_]

T N - 3 It
T 1 T

4 5 6 7 8
APPLIED FORCE (POUNDS)

N
[N
~0 -
=

Figure 5-1
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Pilot data, obtained during Phase 2A simulations, which compare
the three side-stick controllers shown in Figure 5-3 are pre-
sented in Figure 5-4. Data shown represent averaged pilot rat-
ings for three low-speed, VMC tasks -- the NOE, Bob-up, and
Precision Hover. As indicated, Level 1 pilot ratings were
achieved only with the MSI-SD3 SSC having a small amount of
deflection in all four axes. All subject pilots felt that de-
flection in each control axis provided better definition of
individual axis commands, reduced the tendency to inadvertly
couple control inputs between axes, and allowed precision con-
trol tasks to be performed more accurately. The stiff control-
ler (MSI-SS) was felt to provide poor tactile feedback to the
pilot and gave the feeling of not being "tight" in the control
loop. This controller also exhibited a tendency toward pilot-
induced oscillations (PIO) and was less tolerant to variations
in response sensitivity changes than the other two controllers.

The MSI-SD2 SSC (Small-deflection in pitch and roll, stiff in
directional and collective) was considered an improvement over
the stiff controller but exhibited the most degraded pilot rat-
ings. Pilot comments indicate that poor control force harmony
resulted from the combination of two stiff and two small-deflec-
tion axes on the same controller.

Controller Configuration

Separated controller configurations consistently received bet-
ter pilot ratings for multi-axis control tasks than did the
fully integrated 4-axis controller configuration. Figure 5-5
presents pilot ratings obtained for the VMC and IMC 30-Knot
Slalom Task performed during Phase 1. The effect of controller
configuration on pilot ratings is evident from this figure.

The (2+1+1) and (3+1) Collective configurations received im-
proved ratings compared to the (4+0) and (3+1) Pedal configu-
rations. Pilot comments indicate that a major deficiency with
both the (4+0) and (3+1) Pedal configurations was the tendency
to cross-couple pitch and roll inputs into the vertical axis.
The removal of collective control from the right-hand SSC elim-
inated this tendency. Yaw control in the SSC was felt to im-
prove directional control, especially for precise heading changes.
Pilot ratings for the (2+1+1) and (3+1) Collective configura-
tions were comparable for IMC, whereas under VMC the (3+1)
Collective configurations exhibited slightly degraded ratings
compared to the (2+1+1) configurations.
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6.0 CONTROL LAW DEVELOPMENT

6.1 BASIC CONCEPTS

Figure 6-1 presents a block diagram of the flight control sys-
tem design concept developed for the ADOCS Demonstrator Pro-
gram. The use of this system formulation allows for
development of handling qualities requirements while still con-
sidering aspects of hardware design and redundancy management.
Major advantages of this system design concept are:

o Satisfactory unaugmented flight is attained by providing
feed-forward command augmentation and shaping as an inte-
gral part of the primary flight control system (PFCS).
Control mixing and prefiltering are included in the PFCS
to reduce pilot workload to an acceptable level for unaug-
mented flight.

0 Stabilization feedback loops are optimized solely for max-
imum gust and upset rejection. This allows use of high
gain full-time stabilization loops required for good atti-
tude or velocity hold during NOE maneuvering or tight po-
sition hold for precision hover tasks. Also, aircraft
attitude excursions are minimized for improved target ac-
quisition and weapon delivery. No compromise for control
response 1s necessary.

o Use of a control response model provides forward loop com-
mands to tailor the short and long term responses to pilot
control inputs as required to achieve satisfactory pilot
ratings and performance. Any desired control response can
be obtained by appropriate feed-forward shaping regardless
of the level of stabilization.

o Pilot display symbology is driven by the same sensor set
used for flight control. For some failure modes, redun-
dant signals may be available in the AFCS as backup inputs
to the symbology display.

Various control system concepts were formulated to accomplish
the attack helicopter low speed/hover maneuvers. The generic
SCAS configurations chosen for evaluation are defined in Figure
6-2 in the form of a command response/stabilization matrix. A
simple identification code (Figure 6-2) was established. For
example, a system with angular rate command and attitude stabi-
lization in pitch and roll was identified with the letter code
RA/AT.

The method of SCAS implementation used for the simulation 1is
i1llustrated in Figure 6-3 for the lateral axis. All control
axes were implemented in a similar manner. The stabilization
gains shown on the diagram were selected prior to the piloted
evaluation phase using the helicopter/stability augmentation
system model shown in Figure 6-4. Elements of the model in-
clude transfer functions to represent the dynamics of the basic
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helicopter, rotor and actuators as well as a computational time
delay. Nichols chart and Root Locus techniques were used to
select feedback gains. Multiple feedback paths, each increas-
ing overall level of stability, were closed around the aircraft
model one at a time. Gains were determined based on a damping
ratio design criteria ({ = 0.7). The stabilization loop gains
derived by this method were similar to gains of previously de-
veloped aircraft systems (i.e., TAGS, HLH).

A six degree-of-freedom small-perturbation model of the heli-
copter was used to develop the command response model for each
axis. The analytical study established control response model
gains for cancellation of undesirable roots of the vehicle's
characteristic equation. Control response model feed-forward
parameters were defined for each of the response types previ-
ously described. For example, Figure 6-5 shows the lateral
response to step force input for an attitude command system
with velocity stabilization.

During the preliminary control response design process, infor-
mation from available literature, as well as related experi-
ence, was used to develop design criteria. Quantitative design
guidelines for a SCAS intended for low speed and hovering flight
is contained in Reference 12 along with VTOL aircraft flying
qualities criteria developed from an existing experimental data
base. Requirements for generic SCAS designs such as angular
rate command, attitude command, and translational rate command
are proposed together with suggested vertical augmentation sys-
tem characteristics. In addition, the use of velocity command
system for the Precision Hover Task was flight demonstrated on
the HLH Program (References 13 and 14), and the desirability of
this control concept was confirmed based on study results pub-
lished in References 15 and 16.

6.2 SIMULATION RESULTS

A summary of pilot rating data for all tasks and controller
configurations combined is shown in Figure 6-6. Under VMC, the
"hybrid" command system (e.g. attitude command/velocity hold in
hover for pitch and roll, attitude command/airspeed hold (AT/AS)
in pitch and rate command/attitude hold (RA/AT) in roll for
forward flight) was required for Level 1 handling qualities.

The addition of velocity command, with or without position hold,
further improved pilot ratings for the Bob-up and Precision
Hover Tasks only. Pilot ratings were typically degraded 1.5
pilot rating points under IMC compared to similar VMC tasks.

The range of pilot ratings also increased under IMC as indicated
by the larger standard deviation shown on Figure 6-6. Under
IMC, Level 1 ratings were achieved only for the Precision Hover
and Bob-up Tasks with a velocity command/position hold (LV/PH)
system.

Sstudies of directional and vertical SCAS variations showed the
benefit of a yaw rate command/heading hold or a altitude rate
command/altitude hold system respectively. Figure 6-7
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illustrates the improvement in pilot ratings achieved with the
yaw rate/heading hold system for three low-speed tasks. A deg-
radation in pilot ratings with the yaw acceleration command
system was evident as increased precision of yaw control was
required. Automatic turn coordination was found to be espe-
cially beneficial for forward flight turning maneuvers. Figure
6-8 presents pilot rating data for the 90-Knot Slalom under VMC
with and without automatic turn coordination. Pilot ratings
were significantly improved from Level 2 to Level 1 with the
addition of automatic turn coordination for all controller con-
figurations evaluated.
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7.0 DISPLAY SYSTEM EFFECTS

The importance of superimposed flight control symbology to the
enhancement of handling qualities with a limited field of view
FLIR image of the outside world has been reported in Reference
17. Baseline display laws and information format used for this
investigation were defined based on the AH-64 Pilot Night Vi-
sion System (PNVS) (Reference 1). The selectable display modes,
which are used to meet the operational requirements for various
AAH mission tasks, are:

(1) Cruise: high-speed level flight enroute to the for-
ward edge of the battle area;

(2) Transition: low-speed NOE maneuvers such as dash,
quick stop, and sideward flight;

(3) Hover: stable hover with minimum drift; and

(4) Bob-up: unmask, target acquisition, and remask ma-
neuvers over a selected ground position.

Figure 7-1 presents the display mode symbology divided into
three categories - central, peripheral, and weapon delivery/
fire control symbology. The characteristics of each symbol are
described and the symbols which appear for the three low-speed
mission modes used during this investigation are identified.

In a simulator investigation of a night-time attack helicopter
mission which included a head-up display of the PNVS symbology
(Reference 15), it was found that the dynamics of the symbology
used to aid the pilot in achieving a precision hover at night
had a significant effect on the handling qualities of the vehi-
cle. As a result, because of the wide variation in candidate
SCAS concepts to be investigated, it was also necessary to en-
sure compatibility of the symbol dynamics with the varying dy-
namic characteristics of the augmented helicopter.

Variations to the baseline AH-64 symbology were made based on
Reference 15 as well as a review of reported display system
characteristics implemented on the PNVS surrogate trainer flown
at the U.S. Army Test Proving Ground, Yuma, Arizona. Changes
were incorporated in the programmed symbology primarily to im-
prove low speed maneuvering and hover hold task performance, as
well as to reduce pilot workload. These changes, evaluated
during the preliminary IHADSS check-out testing, were as
follows:

(1) Velocity vector sensitivity was decreased by a factor
of two for all modes - from 6 knots to 12 knots full
scale in the hover and bob-up modes, and from 60 knots
to 120 knots full scale in the transition and cruise
modes.
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Figure 7-1
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(2) Hover position sensitivity was decreased for the bob-up
mode from a full scale deflection of 44 feet to 88
feet.

(3) A horizon line was included in the symbology format
for all modes. The AH-64 has the horizon line in the
transition and cruise modes only.

(4) Lateral acceleration was used to drive the "ball"
display instead of sideslip angle to augment the sim-
ulation turn coordination cues at low speed.

(5) The cyclic director, or longitudinal and lateral ac-
celeration cue, approximated by washed-out pitch and
roll attitudes, required different sensitivity and
time constant values as a function of the command
response system type, i.e., rate, attitude, or veloc-
ity. Values were established in the same manner dis-
cussed in Reference 15.

In addition, several modifications were made to the IHADSS sym-
bology used in the Phase 1 IMC simulation study. These chang-
es, incorporated during preliminary Phase 2 IHADSS checkout
testing, were based on pilot commentary received during the
Phase 1 simulation program at Boeing Vertol.

Figure 7-2 compares the formats used during Phase 1 and Phase
2B. As shown in this example, the changes include:

(1) Additional pitch-attitude symbols to provide a more
compelling and accurate display of pitch and roll
attitude.

(2) The movement of the heading symbols to the lower cen-
ter of the display to eliminate the eye muscle strain
caused by its usual location well above the display
center; the heading scale was also truncated to de-
clutter the display.

(3) The replacement of the diamond-shaped aircraft nose
symbol by a cockpit reference display; this symbol
provided information concerning aircraft orientation
relative to head azimuth and elevation in a format
designed to alleviate the disorientation problems
experienced in maneuvering flight reported in Phase
1.

Simulation Results

The degraded visual capabilities provided by IHADSS signifi-
cantly effected pilot ratings. Figure 7-3 shows the decrement
in ratings obtained from pilots who performed identical tasks
under both IMC and VMC. Tasks which required more head motion
and/or aircraft maneuvering were most adversely effected by IMC
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with IHADSS. Pilot ratings for the NOE Task, which was felt to
be the most difficult task under both VMC and IMC, degraded an
average of 2 points on the Cooper-Harper Scale. Ratings for
the Precision Hover and 90 Knot-Slalom Tasks which required
little head movement were within half a rating point under both
VMC and IMC. As shown on Figure 6-6 previously, Level 1 rat-
ings under IMC were achieved consistently only with the highest
level of stabilization, the LV/PH system, and only for the Bob-
up and Precision Hover Tasks.

Degradation of task performance under IMC with IHADSS was ob-
served in terms of ground track deviation, velocity hold and
control coordination during multi-axis flight maneuvers. For
the Bob-up Task, however, task performance as measured by mean
radius error was improved under IMC. Figure 7-4 presents aver-
aged performance data for the Bob-up Task under VMC and IMC
with and without turbulence. As shown, pilots consistently
held X-Y position significantly better under IMC with IHADSS
than under VMC. The IHADSS symbology provided an absolute
ground position reference which was not available under VMC.

52



DATA FOR 4-AXIS CONTROLLER CONFIGURATION

MEAN RADIUS FROM INITIAL POSITION (ft)

704

60 -

50

40

30-

10

EFFECT OF TURBULENCE
ON BOB-UP PERFORMANCE

—IMC AND VMC-

ALTITUDE HOLD ON
HEADING HOLD ON

TURBULENCE

® VMC
A IMC

A

~
~
~N

N
WIND SHEAR ™~

AND ~
TURBULENCE S - - — .
CALM TN
A
T

T ] i i L
RA/AT AT/AT ATI/LV LVILV LV/PH
PITCH/ROLL SCAS CONFIGURATION

Figure 7-4
53



54



8.0 CONCLUSIONS

Piloted simulation investigations were conducted as part of the
Advanced Cockpit Controls/Advanced Flight Control System (ACC/
AFCS) element of the Army's ADOCS program. The effects of var-
iations in side-stick controller configuration and stability
and control augmentation characteristics on scout/attack heli-
copter handling qualities were evaluated using flight simula-
tion facilities at Boeing Vertol and NASA-Ames. Low speed,
transition, and forward flight mission tasks were performed
under both day visual meteorological conditions (VMC) and
night-time instrument meteorological conditions (IMC) using a
visually coupled helmet-mounted display.

Conclusions from these investigations are summarized according
to major elements of the simulation study, including side-stick
controller design, controller configuration, SCAS design, and
IMC display effects.

8.1 SIDE-STICK CONTROLLER DESIGN

A 4-axis controller with small-deflection in all axes was pre-
ferred over a 4-axis stiff-stick design, or a design having
small-deflection in only the pitch and roll axes. Small-deflec-
tion in each axis of the controller improved the pilot's abili-
ty to modulate single-axis forces and enhanced control preci-
sion for high-gain tasks such as Precision Hover. In high work-
load situations, there was less tendency with a limited-deflec-
tion controller to over-control and/or cross-couple control
inputs.

Pilot ratings with a deflection controller are less sensitive
to variations in control response/force gradient. As a result,
it would be easier to design acceptable control response char-
acteristics for a wider range of pilot preferences if a small-
deflection device were implemented.

Controller Orientation

Controller orientation for both the right-hand and left-hand
side-stick controller was adjusted to a position acceptable for
all test pilot participants. Orientations were chosen to mini-
mize interaxis control inputs as well as to provide a comfort-
able arm position to reduce fatigue. Figure 8-1 illustrates
the final orientation used during the Phase 2B simulation.

8.2 CONTROLLER CONFIGURATION

4-Axis Controller

with a high level of stability and control augmentation, satis-
factory handling qualities were achieved for the low-speed tasks
investigated using the preferred small-deflection 4-axis con-
troller i.e., small deflection in all control axes. However,

55

PRULCEDING PAGE BLANK NOT FILMED f”
INTENTIONALLY BLANK



FINAL CONTROLLER ORIENTATION
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the 4-axis configuration exhibited degraded pilot ratings com-
pared to separated controller configurations for:

0 Multi-axis control tasks, such as the Precision Hover,
Decelerating Turning Approach-to-Hover, and the High-Speed
Slalom

0 Reduced levels of stability and control augmentation

Separated Controller Configurations

The separated vertical controller configurations -- (3+1) Col-
lective and (2+1+1) -- achieved similar overall pilot ratings
which were generally improved compared to the integrated 4-axis
controller configurations for the lower levels of stability and
control augmentation investigated. Either separated vertical
controller configuration was preferred for the high speed sla-
lom maneuver and the descending decelerating approach-to-hover
task. Separation of the vertical controller provided the fol-
lowing significant advantages for VMC or IMC terrain flight:

o Elimination of unintentional cross-axis coupling, espe-
cially vertical-to-pitch/roll coupling.

0 Reduction of pilot workload for multi-axis tasks due to
the separation of any required steady vertical or direc-
tional control forces from continuously modulated pitch
and roll forces.

Directional control on the side-stick -- (4+0) and (3+1) Col-
lective configurations -- provides more precise heading control
than the pedals. There is a tendency to inadvertently couple
yaw control to roll; however, all pilots adjusted easily to
eliminate or minimize this characteristic. The (3+1) Pedal
configuration evaluated during Phase 1 significantly degraded
pilot ratings for IMC tasks because of poor yaw
controllability. The limited field-of-view helmet-mounted dis-
play had a strong effect on lateral-directional control. The
use of separated pedals for VMC tasks was not a problem. With
good peripheral visual cues, directional control became a less
demanding task.

8.3 SCAS DESIGN

The level of handling qualities attainable by various generic
SCAS configurations was defined as follows:

Pitch and Roll SCAS

For low-speed maneuvering and Precision Hover Tasks under VMC,
an attitude command/velocity stabilization system (AT/LV) pro-
vided satisfactory handling qualities for all controller
configurations.
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In forward flight satisfactory ratings under VMC were achieved
with a hybrid combination of control laws consisting of pitch
attitude command/airspeed stabilization (AT/AS) in the longi-
tudinal axis and roll rate command/attitude stabilization
(RA/AT) in the lateral axis.

Satisfactory handling qualities were not achieved for any com-
bination of controller and AFCS investigated for the low-speed
IMC maneuvering tasks. Satisfactory ratings were obtained un-
der IMC for both the Bob-up and Precision Hover Tasks when per-
formed in calm air with a longitudinal and lateral velocity
command/velocity stabilization system. With wind and turbu-
lence, the addition of a position hold feature was required to
maintain satisfactory ratings for the Bob-up Task.

Yaw and Vertical SCAS

Heading and altitude stabilization were beneficial for all tasks.
Yaw rate and vertical velocity command systems were preferred
for all tasks and controller configurations. However, with a
pitch and roll rate command system, there exists a preference
for side-stick yaw acceleration and vertical acceleration com-
mand systems to eliminate the requirement to hold steady forces
during multi-axis maneuvers.

Control Law Mode Switching

To achieve the desirable low speed and forward flight handling
qualities without pilot selection, the control laws required
automatic switching during transition as follows:

o Longitudinal - Pitch attitude command/groundspeed stabili-
zation for low speed and pitch attitude command/airspeed
stabilization at high speed.

o Lateral - Roll attitude command/groundspeed stabilization
for Tow speed and roll rate command/attitude stabilization
at high speed.

o Directional - Full-time heading hold for low speed and
turn coordination in forward flight.

The method developed to switch control laws felt natural to the
pilot. No undesirable effects on handling qualities were evi-
dent during transition maneuvers as control low switching was
prevented until rates and attitudes were below predefined
thresholds.

Automatic Control Force Trimming

For stiff-stick or small-deflection controllers, elimination of
steady forces for steady-state helicopter trim must be automat-
ic through design of the primary control system and/or SCAS
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control response laws. The build-up of long-term steady forces
1s unacceptable.

8.4 IMC DISPLAY EFFECTS

The reduction in quality of visual cues and occasional disori-
entation experienced when looking off the aircraft centerline
with the visually coupled helmet-mounted display caused signif-
icant degradations in handling qualities for certain IMC tasks
relative to the identical tasks conducted under VMC. This deg-
radation was especially severe for the low-speed NOE maneuver-
ing task which required a significant amount of pilot head
motion to acquire the required visual information. Significant
improvements in hover position hold performance occurred for
the IMC tasks compared with the VMC tasks because of the pi-
lots' use of the displayed superimposed symbols which included
explicit inertial velocity and position error information.
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9.0 RECOMMENDATIONS

The recommendations presented herein are based on the results
of the previously described simulation studies. As Boeing
Vertol was awarded both contracts -- the ACC/AFCS element of
the ADOCS program contract and the ADOCS flight demonstrator
program -- the recommendations presented in this section have
been incorporated into the demonstrator control system design.

9.1 CONTROLLER DESIGN

The definition of a multiaxis side-stick controller (SsC) de-
sign for use in the ADOCS demonstrator aircraft was a primary
objective of the ACC/AFCS simulation study. Force-deflection
characteristics were defined and the effect of the number of
axes controlled by the SSC was investigated.

Recommended design characteristics for the various controllers
to be manufactured by Lear Siegler Inc. are based on the ACC/
AFCS simulation results. Design characteristics for the 4-axis,
right-hand SSC are given in Table 9-1 for each control axis.
Force/displacement characteristics for separated controllers,
including a left-hand single-axis collective controller and
small-deflection force pedals, are defined in Table 9-2. The
Lear Siegler ADOCS brassboard 4-axis controller with the char-
acteristics outlined in Table 9-1 was evaluated during the final
piloted simulation phase at NASA-Ames. The results from this
simulation demonstrated that an acceptable hardware design was
achieved.

In addition to the 4-axis configuration, the simulation stud-
ies investigated alternate controller configurations (See Fig-
ures 3-2 and 3-3). Because the separated controller configura-
tions (e.g. the (3+1) Collective and the (2+1+1) configurations)
received improved pilot ratings for certain tasks, the demon-
strator aircraft will contain provisions for flight evaluation
of these configurations as well as the 4-axis configuration.

9.2 CONTROL LAW DESIGN

The control laws developed during the ACC/AFCS program were
designed to provide the handling qualities required to accom-
plish the attack/scout helicopter mission. The control laws
were implemented in a manner that facilitates the evaluation of
various SCAS command/stabilization systems during flight test-
ing of the demonstrator aircraft. The recommended PFCS design
provides control shaping for both AFCS ON and OFF operation and
includes a force trim method that eliminates the requirement
for open loop integrators which are undesirable due to redun-
dancy management constraints.
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PFCS Design

Significant features of the recommended PFCS design (Figure
9-1) are briefly described as follows:

Force Transducer Quantization - 8-bit signal quantization is
required to provide acceptable response resolution in each
axis.

Nonlinear Command Response Sensitivity - To provide acceptable
response characteristics for both small precision control tasks
and large maneuvers, nonlinear command shaping is required.

Derivative Rate Limiter - A derivative rate limiter is required
in each axis to limit the magnitude of initial acceleration
response during rapid maneuvers when using a force controller.

Command Signal Shaping - Forward path lead-lag shaping is in-
cluded 1in the PFCS full time for augmented flight conditions.
Lead-lag time constants are selected to properly match the de-
sired command model and basic helicopter response characteris-
tics in order to achieve a balanced or small AFCS output during
dynamic maneuvers. During AFCS OFF operation, a parallel high-
gain lag path with a long time constant is included to automat-
ically reduce steady-state control trim forces to an acceptably
low level.

SCAS Design

The stability and control law features recommended for the ADOCS
demonstrator design are summarized in Tables 9-3 and 9-4. These
design features for SCAS ON flight evolved from the extensive
ACC/AFCS simulation studies. Low-speed and forward flight con-
trol laws are defined in Table 9-3 for the basic SCAS configura-
tion. Table 9-4 identifies the selectable modes that provide the
handling qualities to meet attack helicopter IMC or VMC mission
requirements for precision hover capability and for tight flight
path control during low-speed NOE maneuvers.

9.3 DISPLAY SYSTEM

The selectable display modes used to meet attack helicopter
operational requirements for various mission tasks are:

Cruise - high-speed level flight enroute to the forward
edge of the battle area;

Transition - low-speed NOE maneuvers such as dash, quick
stop, and side-ward flight;

Hover - stable hover with minimum drift; and

Bob-Up - unmask, target acquisition, and remask maneuvers
over a selected ground position.
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A three-position (center off) mode select switch is required to
sequence through the four modes in either the forward direction
(i.e. Bob-Up, Hover, Transition, Cruise) or reverse direction.
This switch must be accessible to the pilot's left-hand, either
mounted on the left-hand side-stick controller or on the con-
trol panel. If mounted on the controller, the breakout force
required to activate the switch must be minimal (i.e. less than
50% of the SSC breakout force).

The symbology dynamics used to aid the pilot under IMC with
IHADSS have a significant effect on aircraft handling quali-
ties. The compatibility of the symbol dynamics for the various
modes and varying dynamic characteristics of the SCAS configu-
ration must be ensured. Therefore, the display mode logic must
automatically change the symbology format/sensitivities as a
function of control laws, to reduce pilot workload and improve
low speed maneuvering and hover hold task performance.

For instance, selection of the Bob-up display mode will also
automatically engage the SCAS Hover Hold Mode providing a ve-
locity command system. Logic to automatically enable/disable
display modes should be considered. For instance, the Bob-Up
and Hover display modes could be restricted to low speed flight
less than 25 knots while the Cruise mode might only be used for
high speed flight at airspeeds greater than 50 knots.

68



10.

11.

12.

REFERENCES

Tsoubanos, C. M. and Kelley, M. B.: "Pilot Night Vision
System (PNVS) for Advanced Attack Helicopter (AAH)". AHS
Preprint No. 78-16, 34th Annual National Forum of the Amer-
ican Helicopter Society, Washington, D.C., May 1978.

"Military Specifications - Flying Qualities of Piloted
V/STOL Aircraft." MIL-F-83300.

Jones, A. D., "Operations Manual - Vertical Motion Simula-
tor (VMsS) S.08," NASA TM-81180, 1980.

Cooper, G. W. and R. P. Harper, Jr., "The Use of Pilot
Rating in the Evaluation of Aircraft Handling Qualities."
NASA TND-~5153, 1969.

Hall, G. W. and Smith, R. E.: "Flight Investigation of
Fighter Side-Stick Force-Deflection Characteristics".
AFFDL~-TR-75-39, 1975.

Black, G. T. and Moorhouse, D. J.: "Flying Qualities De~-
sign Requirements for Sidestick Controllers". AFFDL-TR-
79-3126, 1979.

Deardorff, J. C.; Freisner, A. L.; and Albion, N.: "Flight
Test Development of the Tactical Aircraft Guidance System."
AHS Preprint No. 761, 29th Annual National Forum of the
American Helicopter Society, Washington, D.C., May 1975.

Hutto, A. J.: "Flight Test Report on the Heavy-Lift Heli-
copter Flight-Control System". AHS Preprint No. 961, 31st
Annual National Forum of the American Helicopter Society,
Washington, D.C., May 1975.

Padfield, G. D.; Tomlinson, B. N.; and Wells, P. M.: "Sim-
ulation Studies of Helicopter Agility and Other Topics".
RAE Technical Memorandum, 1978.

Sinclair, M. and Morgan, M.: “An Investigation of Multi-
Axis Isometric Side-Arm Controllers in a Variable Stabili-
ty Helicopter". NRC, NAE LR-606, 1981.

Smith, Stephen B. and Miller, Charles M., Captain, USAF,
"An Evaluation of Sidestick Force-Deflection Characteris-
tics on Aircraft Handling Qualities", AFFDL-TR-78-171, PP .
395-413, December 1978.

Hoh, R. H. and Ashkenas, I. L.: '"Development of VTOL Fly-

ing Qualities Criteria for Low Speed and Hover". NADC-
77052-30, 1979.

69



13.

14.

15.

le.

17.

"Heavy Lift Helicopter Flight Control System, Volume III-
Automatic Flight Control System Development and Feasibil-
ity Demonstration", USAAMRDL-TR-77-40C, September 1977.

Davis, J. M.; and Landis, K. H.; Leet, J. R., "Development
of Heavy Lift Handling Qualities for Precision Cargo Oper-
ations." AHS Preprint No. 940; 31st Annual National Forum
of the American Helicopter Society, Washington, D.C.,

May 1975.

Aiken, E. W. and Merrill, R. K.: “Results of a Simulator
Investigation of Control System and Display Variations for
an Attack Helicopter Mission". AHS Preprint No. 80-28,
36th Annual Forum of the American Helicopter Society,
wWwashington, D.C., May 1980.

Hoh, R. H. and Ashkenas, I. L., "Handling Quality and Dis-

play Requirements for Low Speed and Hover in Reduced Flight
Visibility." AHS Preprint No. 79-29; 35th Annual National

Forum of the American Helicopter Society, Washington, D.C.,
May 1979.

Keane, W. P., Shupe, N. K., Sun, P. B., Robbins, T., and
Campagna, R. W., "A Versatile Display for NOE Operations."
AHS Preprint No. 77.33-24; 33rd Annual National Forum of
the American Helicopter Society, Washington, D.C.,

May 1977.

70



t. Report No. NASA CR- 177339 " 2. Government Accession No. 3. Recipient’s Catatog No.
and USAAVSCOM TR 84-A-7

4. Title and Subtitie

Development of ADOCS Contrcllers and Control Laws
Volume 1 - Executive Summary

§. Temert Dats
March 1985
_6.- Pedo;;ong Organization Code

8. Performing Orgenization Report No.

D210-12323-1
10. Work Unit No.

7. Authorl(s)

K. H. Landis, S. I. Glusman

9. Performing Organization Name and Address 112632110315

goeéngBVerigéSgompany 11. Contract or Grant No.
. 0. Box

Philadelphia, PA 19142 NAS2-10880

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Final Report 1/81 - 6/384
National Aeronautics and Space Administration
Washington, DC 20546 & U.S. Army AVSCOM, St. Louis,
MO 63166 505-42~11

15. Suppiementary Notes

Point of Contact: Technical Monitor, Edwin. W. Aiken, Ames Research Center,
Moffett Field, CA 94035. Phone: (415) 694-5362; FTS: 464-5362, AUV: 359-5362

14. Sponsoring Agency Code

16. Abstract

The Advanced Cockpit Controls/Advanced Tlight Control System (ACC/AFCS)
study was conducted by the Boeing Vertol Company as part of the iArmv's
Advanced Digital/Optical Control System (ADCCS) program. Soecifically,
the ACC/AFCS investization was aimed at developing the flight control
laws for the ADOCS demonstrator aircraft that will provide satisfactory
bandling qualities for an attack helicopter mission. The three major
elements of design considered during the ACC/AFCS study are summarized
as follows: Pilot's Integrated Side-Stick Controller (SSC) -- Number of
axes controlled; force/displacement characteristics; ergoanomic design.
Stability and Control Augmentation System (SCAS)--Digital flight coatrol
laws for the various mission nhases; SCAS mode switching logic. Pilot's
Displays--For night/adverse weather conditions, the dynamics of the
superimposed symbology presented to the pilot in a format similar to the
Advanced Attack Helicopter (AAH) Pilot Night Visioa System (PNVS) for
each mission phase as a function of SCAS characteristics; display mode
switching logic. Volume I is an Executive Summary of the study. Findings
from the literature review and the analysis and synthesis of desired
control laws are reported in Volume 2. Results of the five piloted
simulations conducted at the Boeing Vertol and NASA-Ames simulation
facilitlies are presented in Volume 3. Conclusions drawn from analysis of
pilot rating data and commentary were used to- formulate recommendations
for the ADOCS demonstrator flight control system design. The ACC/AFCS
simulation data also provide an extensive data base to aid the develonment
of advanced flight control system design for future V/STOL aircraft.

17. Key Words (Suggested by Author(s)) 18. Distnibution Statement
Flying anlltlgs Helicopter Unclassified -
Flight Simulation Rotorcraft

Flight Control Systems
Side-Stick Controllers
Cockpit Displavs

19. Security Qassif. {of this report) 20. Security Clasuf. (of this page) 21,
Unclassified Unclassified 82

ubject Category 08

No. of Pages 22. Prics’

*For sale by the National Technical Information Sarvice, Springfietd, Virgima 221 61






